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$ ENSLAPP*, Chemin de Bellevue BP 110.74941 Annecy-le-Vieux Cedex, France 

Received 18 April 1995 

Abstract The Gelfand-Zetlh basis for representations of Uq(sl(N)) is improved to better 
fit the case when q is a mot of unity. The usual q-deformed representat&, as well as the 
nilpotent, periodic (cyclic), semi-periodic (semi-cyclic) and also some atypical representations 
are now described with the same formalism. 

1. Introduction 

We are interested in quantum Lie algebras [I-31 and their finite dimensional irreducible 
representations. At generic deformation parameter q, the classification of irreducible 
representations is in correspondence with the classical case [4]. When q is a mth root 
of unity, there are two options: 

One can consider first the restricted quantum Lie algebra, where the raising and lowering 
generators are nilpotent, i.e. e; = ff = 0 and where the Cartan generators hi are such that 
kT = (qh')m = 1. Representations of these were studied by Lusztig [5]. A classification of 
irreducible representations of &(s1(3) )  was done in [6]. 

The other option is to fix no relation for the mth powers of these generators, which 
are actually, for an odd value of m, in the centre of the quantum algebra [7]. Then 
the irreducible representations may admit a periodic action for the raising and lowering 
generators. Important work has already been done towards the classification of these 
representations [7,8]. It seems to us that apart from the Uq(s1(2)) [9] case there is still, 
however, no complete classification. 

On the other hand, there are already explicit expressions for representations of Uq(sl(N))  
at roots of unity, the case we will consider from now on. 

In [IO-IS], explicit expressions for representations with periodic (or cyclic) actions of 
the generators are given. 

In [19-221, explicit expressions for the usual representations of Uq(sl(N)) are written, 
which lead, when the deformation parameter q goes to a root of unity, to either irreducible 
or reducible (sometimes not totally reducible) representations, depending on their highest 
weight [6,21,23]. 

The irreducible sub-factors of representations that become reducible or indecomposable 
in the limit where q is a root of unity have sometimes no classical counterpad [6,21] and 
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we call them atypical by analogy with the case of representations of superalgebras. Some 
of them also appear as sub-factors of some degenerations of periodic representations [12]. 

In this paper, we present an improvement of [15] based on the Gelfand-Zetlin 
construction, which allows us to write explicitly, with the same formalism, irreducible 
representations of U,(sl(N)) at roots of unity independently of their nature (i.e. periodic, 
semi-periodic, usual or some atypical). Their nature is actually encoded in the generalized 
parameters involved in the Gelfand-Zetlin basis. All types of finite dimensional irreducible 
representations we are aware of enter in thii scheme (however, atypical representations 
generally need a special treatment). 

In section 2, we present the formalism and some general rules for the construction of 
finite dimensional irreducible representations using the adapted Gelfand-Zetlin pattern. The 
main types of representations are presented as examples in section 3. As an application, we 
finally give in section 4 a set of relations among the generators of the cenfze of U&l(N)) 
that generalizes the relations derived in [24,25]. 

IP) = 

2. The adapted Gelfand-ZetIin basis 

2.1. The quantum algebra U&l(N)) 

The quankm algebra L.l,(sZ(N)) [1,21 is defined by the generators ki ,  k;', ei,  fi (i = 
1,. . . , N - 1 )  and the relations 

kiej = qaljejki k i f i  = q-'fJfiki 

PIN P 2 N  ... PN-1.N PNN 
PIN-1 ... PN-1.N-I 

~. ~ . ... 
PI2 P22 

PI1 

2 ei ei*l - (q + q-')eieiilei + ei*:leT = O 
f i l l f i * l - ~ ~ + ~ - ' ~ f i f i * l f i + f i * l f i 2 = ~  

where (aij)i,j=I ..... N - I  is the Cartan matrix of s l ( N ) ,  i.e. aii = 2, ai.ii1 = -1 and ai, = 0 
for li - j l  1 .  

We will not use the (standard) coalgebra structure in the following. 
Let us now define the adapted Gelfand-Zetlin basis for the representations of Uq(sl(N)).  
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In the classical case, and also in the quantum case when q is generic, the indices pi1 

(2.3) 

are integer and satisfy the triangular identities 
~~ 

Pi.i+l 2 Pi1 > Pi+t,r+l. 

The first h e  of indices determines in this case the highest weight of the representation. 
In the case we consider in the following, q is a root of unity and ,the indices pi1 are 

complex. Let m be the smallest integer such that 4"' = 1. We will only consider the case 
of odd m in this paper. Most of the result can be adapted to the case where m is even by 
applying the prescription of [15]. 

Since the indices pi( appear in the expressions of the matrix elements only through the 
quantities qp;', they can consistently be defined modulo m for most of the representations, 
i.e. two states with indices differing by multiples of m can be identified. This will be ow 
convention unless we specify it in the text. 

We define the 'fractional part' F P ( ~ I I )  of pi1 by 

FP(pid = pii [modi]. (2.4) 

Since the generators move the indices pi1 by integer steps, their fractional part is then fixed 
on a representation, even if they do not belong to the first l ie .  

The specifications and restrictions on the values of the indices pc1 will be given after 
the action of the generators on the vectors Ip) .  

2.3. Action of the generators 

The action of the generators k:', el,  fi is given by 
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1 i f i < j  
-1 if i > j. 

&;j = 1 
The parameters q i j l  are in'uoduced to break the symmetry between the actions of e! 

and fi, and to allow one to vanish whereas the other does not. They will be taken to be 
0, f (the standard value) or 1. They are not counted as 'continuous parameters' in the 
following. These actions of the generators on the Gelfand-Zetlin vectors define a module 
over U,(sl(N)) since they can be formally obtained from those of [15] by a change of 
normalization (see appendix for details). 

From the expression of the above matrix elements, it is obvious that the indices p ; ~  
belonging to the same line I play a symmetric role. They can formally be permuted. This 
remark did not hold in the classical case when the indices were always related altogether 
by triangular identities (2.3). 

Let us denote by ai (i = 1, .  . . , N - 1) the simple roots of s l (N) ,  and by a i j  = 
ai + . . . + a j - 1  (i < j )  the positive roots. We define the raising generators eij e,,, and 
&j = &,!, f o r i  .c j by 

~~ 

e i , i+ l  = ei,i+l = et 1 -  Zi , j+1  = Z i j e j  - q e j & j  

for i = 1,. . . , N - 1 

for i < j ei,j+l = e i j e j  - q-'e.e,  , r,  (2.10) 
for i  < j .  

The lowering generators f i j  and are-defined by the same inductions. 
The action of these generators on the Gelfand-ZetSin representation is given by 

(2.1 1) 

For j j  and &j ,  just change the sign of the exponent of q. 
The symbols PL and (U = 1, . . . , 3 )  denote the product of all the factors coming 

from the product of Pi and Pc except those involving two of the modified indices pjiI+i 
(i = 0.. . . , n). Hence, (respectively K) are the common factors of the products 
fi . t. fi+. (respectively e1 . . . e[+.) that arise in the expansion of fi.r+.+l (respectively 
er.l+n+l), and they do not depend on the order of the product. The q-numbers involving 
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differences of the indices pjjl+i (i = 0,. . . , n)  (which depend on the order of the product), 
gather and reduce to the single power of q. 

Note that for real FPs of the indices, each q-bracket in the above P factors is real. Thus, 
for example, if all the exponents qijr are equal to $, one has Hermitian conjugacy e, = f:. 
Moreover, (k")t = k7'. 

2.4. Restrictions on the values of the indices 

The above expressions (2.5) involve Pi and P; in the denominators. They are well defined if 
either these denominators never vanish, or they are compensated by zeros in the numerators. 

The first case is what happens for the most generic representations (i.e. generic indices 
pit ,  not generic q), with maximal dimension and number of parameters [7]. In this case, any 
two indices of the same line pit and pjr have unequal fractional parts, i.e. FP(p;l- p j l )  # 0. 
Even after translations by integers due to the action of the generators, the q-numbers 
[pi[ - p j l ]  never vanish and neither does the whole denominator. The number of parameters 
and the dimension will be given in the examples. 

On the other hand, some indices pit and pjl of the same line can have the same fractional 
part, on the condition that zeros in the numerators compensate the denominators when they 
vanish. This happens if some indices belonging to the adjacent lines 1 %  1 have the same 
fractional part as pi1 and pjl .  

We study here a sufficient condition for the matrix elements to be well defined. It is the 
condition that forbids any pair of indices of the same line becoming equal under the action 
of raising and lowering generators. This condition leads in particular to the case of the 
usual q-deformed representations. Let us denote by nl(x) the number of indices pi1 of line 
1 with fractional part x .  One part of the condition is that this function (which is non-zero 
only for a finite set of points C / f Z ,  of course) obeys the following inequalities 

nr+l(x) - 2ni(x) + nl- l (x)  > 0 if&) > 1. (2.12) 

Consider indeed two indices pil and pjl with the same fractional part. The action of fi 
and el, which is to translate them by &l, may make them become~,equal. If they reach 
the point where q("') = q ( p I i - ' ) ,  then the denominator Pi or P; vanishes in the mahix 
element ( p j l - l l f i l p )  or (pii+ llerlp), respectively. In order to keep these mahix elements 
finite, some factors of the numerator have to vanish also. Furthermore, the matrix elements 
(plerfi lp) and (plfiellp) have to remain finite, and moreover (plellpjr - I ) (p j l  - llfilp) 
and (plfilpil + l)(p;l+ Ileilp) have to be zero in order to (i) keep the structure of the 
module (preserve [e l ,  fil = (kl - k; ' ) / (q  -q - l ) ) ,  (ii) forbid q ( p r J )  and &i) becoming 
equal, which would lead to further divergences. These constraints are satisfied if 

1 ( 1  - r l i , j l )  + c 7j,i~,l-l i 
[ f ~ ] l ~ l ~ ~ l - l % q ~ ~ l ' . l - ~ ~ ~ q ~ f l ~ )  

c 
c 

[ i ' ~ l g ' ~ i + , d r q ' ~ i ' . i " ) = ~ ( ~ I l - ' ) ,  

[ j , ~ I ~ l , ~ l + , ~ ( ~ , ' . ~ + ~ ) = , ~ ~ l ~ - ' ) }  

plus analogous constraints on viw and qi,;,,l-l.  The sum of conditions (2.13) implies that 
q p "  and q"' are separated, on the discrete circle {qnplrJn~, . . . , , , - l  by at least two pairs of 
indices. If the indices were not defined modulo in, .we would need at least one pair pi,,!,, 
pi,,,i,,, with l', I" = 1 f 1, with the same fractional part as pi! and pi,, satisfying the usual 

W j l  + c (1 - Vj.if.1-1) > 7 I (2.13) 
~ ~ , l l ~ i , ~ l - l - ( ~ , ' , , - , ) ~ ( ~ , , ) ,  
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triangular identities 
Pjl > PI‘J > Pit if 1’ = 1 + 1 

if 1’ = 1 - 1 
if 1” = 1 + 1 [ pjl > pi”,l,, > pi, if 1” = 1 - 1. 

(2.14) 
Pjl 2 Pi’,[’ > pi1 

pi ,  > p{”.l” > pi] 

Since the indices are periodic, q p “  and 4’’” have two ways to reach each other on the circle, 
so two pairs of indices belonging to the adjacent lines are needed to prevent them from 
becoming equal, one pair for each intenral q”’ and qPJl define on the circle { q ” P “ ] n ~ . . . . . m - l .  

Figure 1. q p ”  and qpl‘ are separated, on each side they define on the circle, by two pairs of 
indices with the same FP from adjacent lines 1 - 1 or 1 i 1. 

Then nl(x) indices on l i e  1 with the same fractional part x have to be separated by (at 
least) 2n1(x) indices from lines 1 f 1 with the same fractional part x ,  which is precisely the 
condition expressed by (2.12). If nl(x) < 2, the above discussion of course does not apply 
and there is no constraint at level 1. If all the exponents q are equal to 4, the condition 
(2.12) is enough since (2.13) are then automatically satisfied. 

The set of indices with fractional part x can then be gathered into a sum of sub-triangles 
with a possible line (which can be broken) starting from the lowest point of the biggest 
triangle. For this we use the symmetry among the indices that allows each line .to be 
reordered. The triangular shape is the most natural since it recalls the classical one with the 
triangular identities (2.3). With respect to [U], the new point is the possibility of a sum of 
triangles with the same fractional part, and the line continuing the biggest triangle. 

\ 
\ Figure 2. An admissible set of indices with the same m. 

This analysis is done independently for each x ,  so that several sets of indices with FP x 
that correspond to different x can coexist. 



Representations of Up(sl(N)) af roots of unity 5501 

A special case of a sub-triangle of indices with the same fractional part has to be 
considered: when the indices p j ~  with 1 < j < I - N +NI and N - Nl + 1 Q I < N (since 
the indices of the same line play the same role, we choose here the upper left triangle for 
convenience) satisfy the equalities 

PI,I+I = PO = Pi+1,1+l + 1 ~ (2.15) 

(similar to (2.3). but with equalities instead of inequalities), then all these indices are frozen 
(el or fr cannot move them). All of them but ~ I , N - N , + ~  = P I N  actually disappear from 
the matrix elements, since all numerators and denominators involving them systematically 
cancel altogether (the exponents 7 related to pairs of indices of the sub-triangle are chosen 
to be f). Only the terms P{( j ,  NI + 1; p )  and P f ( j ,  N I  + 1 ; ~ ~ )  of the numerators still 
involve p1,~-~,+1 = PIN. In the actions of el or fi (2.5), the terms corresponding to 
shifts of indices of this triangle can be removed. This simplification allows us to forget 
completely about the existence of these indices, except p I N  (fixed) of the first line, that 
appears in P{( j ,  NI+ 1; p )  and P f ( j ,  NI + 1; p ) .  The indices of the triangle are no longer 
taken into account in the function n ~ ( x ) .  The existence of P I N  in P;(j, N I  + 1: p )  and 
P f ( j ,  NI + 1; p ) ,  however, changes equation (2.12) at level NI + 1 to 
n N ~ i - Z ( p l N )  -2nN,+l(PIN) + n N j ( P l N ) +  12 0 ifnN,+l(x) > 1. (2.16) 

By an abuse of notation, we write ni(p1N) instead of nl(FP(p1N)). This should not Iead to 
any confusion. 

Again, several such sub-hiangles can coexist. 

3. Examples 

3.1. Periodic (cyclic) representations 

The most generic representations (do not confuse with generic q) are, as explained above, 
those for which ni(x) i 2 for all i and x, i.e. two indices of the same line do not have 
the same fractional part. The indices are also not bounded from above or below by other 
indices of adjacent lines. The dimension is the maximal dlowed dimension when q is a 
mth root of unity, i.e., form odd, (m)N(N-1) /2 .  Each of the N(N - 1)/2 indices pir(l < N) 
takes m values. (For m even, a case we do not consider here, the representation would 
not be irreducible unless we identify lpil+ m / 2 ,  pjj + m/Z) .  In this case, the dimension is 
given in [15].) 

These representations are called periodic (or cyclic) since for 01 a positive root, f," and 
er act as (generally non-zero) scalars on them. 

The continuous parameters for periodic representations are 
the cjl, for 1 < j d 1 c N 
the pjl ,  for 1 < j Q 1 < N (in fact only by their qth power, and modulo integer 

The total number of parameters is then N2 - 1 (after taking into account the constraint 
 pi^ = 0 or P N N  = 0). These parameters are indirectly related to the values of the N2 - 1 

central operators f,", e: and ky .  The values of the q-deformed ordinary Casimir operators 
are actually not independent of those (see section 4). Both the dimension and number of 
parameters agree with [7]. The values of q j j l  do not matter in this case. 

All the other examples correspond to less generic cases.. For non-generic representations, 
the parameters live on snb-manifolds of the N2 - 1 dimensional manifold of the whole set 
of parameters (for instance fractional parts of some indices become equal). This possibly 
leads to 

powers of q for those which do not belong to the top line). 
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w loss of periodicity of some fm or e, 
e reduction of dimension. 

3.2. Semi-periodic (semi-cyclic) representations 

Semi-periodic representations are highest weight representations for which the lowering 
generators are periodic (respectively lowest weight representations with periodic raising 
generators). 

Take u ( x )  < 1 Vl, x ,  and FP(pil - P;.I+I) = 0 for i < 1 .  Choose q;jl = 1 Vi, j ,  1 .  
Then we get a highest weight representation. The highest weight state Ipo) is given by 

pi! = p ; ~  Vi < 1 < N .  On this state, 

erlpo) = 0 Vl -= N and hence e,lpo) = 0 (3.1) 

for all the raising generators e,. 
The dimension of these representations is the same as for periodic representations, 

and the number of parameters is (N  - 1) (N  + 2 ) / 2  (i.e. N - 1 independent PIN and 
N ( N  - 1)/2 cjl). The f. remain periodic on these representations; for this reason we call 
them semi-periodic. The values of the central operators f," and k r  are independent and 
related to the remaining parameters. Note that the vanishing of a f," is not directly related 
to a particular equality of some FP of indices, but rather to more general algebraic equations 
among the qm"' and the c;. 

Semi-periodic representations can also be lowest weight representations, if qijl = 0. 
More complicated examples with mixed vanishing of e; and fa" exist, which can be obtained 
directly by a suitable choice of the parameters, or also by braiding action of the Weyl group 
[26] on a highest weight semi-periodic representation. 

This example of representations could not be taken into account in our first approach 
[U], because the symmetry between raising and lowering generators was not broken enough. 

3.3. Nilpotent representations 

Nilpotent representations are representations with a highest weight vector and a lowest 
weight vector, and hence nilpotent action of all the raising and lowering generators. They 
still have complex parameters related to the values of the operators k y .  

W , x ,  and FP(pil - pj,l+l) = 0 for i < l .  Choose now Take as before nl(x) < 1 
q.. - 1 v i  ,,I - , .is 1. 

The dimension is in this case (m)N(N-1)/2,  i.e. the same as for the periodic representation. 
This representation is nilpotent (i.e. f," = e: = 0 for every positive root a) and it is not 
necessary to consider the indices p;l modulo m, since the range of values for each index 
is bounded above and below by indices of adjacent lines, the upper ones being fixed. The 
nilpotent representation is characterized by N - 1 parameters (the P I N  with p ; ~  = 0 
or p" = 0). corresponding to the values of the operators k r  or to the q-deformed usual 
Casimir operators. (The parameters cjl can here be set to one by a change of normalization.) 

We have the same highest weight vector as for the semi-periodic representations. But 
the f. are no longer periodic. The specification p1l = pi,l+l - m + 1 Vi < 1 < N indeed 
defines the lowest weight vector of this representation. 

In [15], we did not have the correct number of parameters for this kind of representation. 
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3.4. Usual q-deformed representations 

We now consider usual representations, i.e. those that are q-deformations of the classical 
representations, in the limit where q is a root of unity. In the classical case, or when q 
is not a root of unity, the Gelfand-Zetlin indices are integers and there is no reason to 
define them modulo m. When we take the limit where q is a root of unity, we expect no 
periodicity of the indices (usual representations are highest-weight and lowest-weight ones) 
so they are not considered modulo m. 

The usual representations correspond in the Gelfand-Zetlin formalism [19] to the usual 
choice where nI(0) = I for all I < N ,  i.e. all the indices pi! have the same fractional part 
0. The exponents ofjl are set to 1. No continuousparameter survives since the cjl can be 
absorbed in a change of normalization. 

Only a finite number of representations, those with a highest weight satisfying [6,23,15] 

PIN-PNN<m (3.2) 
are well defined in the Gelfand-Zetlin formalism for qm = 1. The condition (3.2) expresses 
the fact that the qth powers of the indices of the first line do not wind more than exactly 
once around the circle (qn)nd,,,.,m-l. This condition is also the unitarity condition, i.e. all 
the matrix elements of el and fr are real for the usual representations, and the matrices of !q 
are unitary. Furthermore, the matrix representing el is the transposed matrix of that of 5 .  

The representations with highest weights that do not obey (3.2) are considered in the 
following subsection, although they are not all atypical. 

3.5. Aiypical representations 

We consider here the quantum analogue of classical (highest weight and lowest weight) 
irreducible representations with a highest weight that does not obey (3.2). When 4"' = ~ l  
these representations are not always irreducible, since some new singular vectors arise in 
the corresponding Verma modules [6], that are not obtained from the highest weight vector 
by action of the translated Weyl group. Quotienting by the sub-representation generated 
by these singular vectors leads to new irreducible representations that we call atypical by 
analogy with the~case of superalgebras. 

The Gelfand-Zetlin basis in the form we consider is not yet totally.adapted for atypical 
representation. This has to be compared with the fact that, for superalgebras, the atypical 
representations are more difficu!t to describe with the Gelfand-Zetlin than the typical ones: 
the atypical representations of some superalgebras or quantum superalgebras were obtained, 
for example, in~[27,28] in the case of gI(nl1) and in [29] in the case of Uq(g1(212)), but 
the general case has not yet been published. 

It seems here that a further adaptation of the Gelfand-Zetlin basis to the atypical case is 
possible. We already obtained some examples of (reducible or irreducible) representations 
that do not obey (3.2). A general study of this case will be the subject of another work. 
Note that the formalism of [21], in which the matrix elements do not contain divergences, 
provides the atypical representations of Uq(s1(3)). 

'Some atypical representation can also be obtained as degenerations of periodic 
representations, by taking the appropriate limit of the parameters. Consider as explained 
before the possibility of 'freezing' a sub-triangle of indices pjr with 1 < j < 1 - N+Nl  and 
N - N I  + 1 5 I 6 N .  Remember that these indices are not taken into account in nl (p lN) ,  
and that the inequality (2.16) holds instead of (2.12) for x = F P ( ~ I N )  and I = NI + 1. 

Choosing nl(plN) = 0 for 1 = 1, . . . , N I  leads only to representations described in the 
next subsection as 'partially periodic'. Some of the generators indeed remain periodic. With 
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NI = N - 1, they are 'flat', i.e. the multiplicities of their weights are always 1 115,301. 
Choosing nl(p1N) # 0 can, however, lead to some cases of atypical representations. In 

particular, with nl(p1N) = 1 and NI = N - 1, we get truncated flat representations [12] that 
can also be seen as an irreducible part of the limit when qm = 1 of representations with 
P I N  - P N N  = m + 1, i.e. just after the limit given by (3.2) [6,21,23]. 

We can recall as examples the cases of the representations of y ( s f (3 ) )  of dimensions 
7 for m = 3 and 18 or 19 for m = 5. A formula for the dimensions of these representations 
in the case of Uq(s1(3)) is, with N1 = 2 and p33 = 0, 

dl = $ P I ~ ( P ~  - 1) 

dz = - p13 + - ~ 1 3 )  

di = i(m + I)pj(m + 1 - p j )  
d; = i ( m  - I)(& - l)(m - p h ) .  

L (3.3) 

d = m 2 - d l - d z  

= di - d; 

The first expression corresponds to the truncation of the flat representation of dimension 
m2 by its two triangular sub-factors of dimensions di and dz (see the figure in 1121). The 
second expression corresponds to the same representation seen as the irreducible part of 
the limit when qm = 1 of the representation of dimension d; with first l i e  of indices (or 
highest weight) ] p i 3  = m + 1, p j  = p13, pi3 = 0) violating (3.2) by 1; d; being the 
dimension of its sub-representation characterized by Ipi3 = m, p& = p13, ph3 = 1). The 
second expression is a particular case of those classified in [6]. 

The generalization of these cases to U,(sl(N)) with N I  = N - 1 is straightforward (flat 
representations). Different values for NI provide other interesting examples. 

3.6. Partially periodic representations 

First note that, since the whole set of indices pi, is defined up to an overall constant, the 
case of the usual q-deformed representations can be written with nr(x) = 1 for any given 
value x E C instead of x = 0. 

As in [15, section 31, one can put in some sub-triangles (those defined by (2.12) and 
figure 2) of sizes NI,. . . , Na, with NI  + . . + N, < N, the indices corresponding to the 
usual representations of some U,,(sl(N1)), . . . , U,(sZ(N,)). 

This prescription reduces the dimension with respect to the maximal one. Each triangle 
indeed contributes to the dimension by a factor equal to the dimension of the related usual 
representation of the corresponding U,(sL(Ni)), instead of a factor equal to (m)N~~"''-i)/2. 
The number of parameters is also reduced, since all the indices of a given sub-triangle have 
the same fractional part, whereas the corresponding cjl are 1. 

The atypical representations of smaller U,(sI(Ni)) can also be used as the usual ones 
to construct partially periodic representations U,(sI(N)). 

4. Application: a set of relations in the centre of q(sZ(N))  

The centre of U,(sI(N)) is generated by the operators fz, e,' k r ,  and the q-deformed 
classical Casimirs Ci 171. Let us introduce supplementary Cartan generators be,, for 
i = 1, . . . , N, that are needed to write the q-deformed Casimirs. These generators are 
such that k,k-,,+, = ko, ki and n,"=, k,, = 1. They satisfy the relations 

5.  (4.1) k,ejk,;' = q 6 z i r L 1 . ~  ej k f.k-1 - -&~+JI-I.J 
*i J 6, - 4  

By convention, kOg = ktkt. The operators kzej are also central. 
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A set of generators for the deformed classical centre (i.e. the whole centre when q is 
not a root of unity) is given by 

where h is the Harish-Chandra isomorphism [31,8] between the q-deformed classical centre 
and the algebra of symmetric polynomials in the 4. 

This isomorphism h can be written as h = y-' oh', with the following notations: h' is 
the projection on Uo, within the direct sum U =Uo@ (7,i-U +MA'), with U U,(sl(N)), 
and where Uo (respectively U+ and U-) is the sub-algebra of U,(s/(N)) generated by the 

Let us write Ci as a function (actually a non-commuting polynomial) of the parameter 
k*, (respectively et and fi). y is the automorphism of Uo given by y(&) = qN+lTZik2 ,. 
q and the generators 

Ci = Fi(q, kZ<, , he,, Afu)  j = 1, .  . . , N ,  a E set of positive roots (4.3) 

with h = q - q - ' .  
Then the comparison of the actions of the mth powers of the generators with the actions 

of the generators themselves on a periodic representation, provides us with the relations that 
hold in the centre of the algebra: 

(4.4) 'Pi.m (NI (cl, . . . , CN-1) = 6 ( q m  = 1, k z , ,  Am<, Am f,") 

k,, .. ..hjj. 

where 'PE) is a polynomial such that 

(4.5) ( N )  m P,,, (h(CI), ... ,h(CN-l)) = 
lGj,<-<j,CN 

(See [25] for details and a proof of these~relations for i = 1 or N - 1. A proof of these 
relations for i = 2, . . . N - 2 will be given elsewhere.) 

In (4.4), the left-hand side is a polynomial in the q-deformed classical Casimirs, whereas 
the right-hand side is a function of operators that are central only when q is a root of unity. 
The nice feature is that this function is, up to numerical coefficients, the same as the 
polynomial that defines the ith Casimirs in terms of the generators. 

Acknowledgments 

We would like to thank A4 Bauer for numemus discussions on the relations in the centre. 
This work is supported in part by EEC contracts no SCT-CT92-0792 and no CHRX-CT93- 
0340. 

Appendix 

We give here the transformation that relates the representation given by (2.5)<2.8) to the 
standard q-deformed Gelfand-Zetlin basis [19]. Let us denote by Ip) the vectors of the 
representation of % ( s / ( N ) )  in the Gelfand-Zetlin basis with all the exponents q equal to 
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4, as defined in 1191. For generic values of the indices pa ,  we define the new basis 

IP) = VP)lP) 

r,(x + I) = [xir,(x). (A2) 
This function is a straightforward adaptation of the definition of [32], in which the definition 
of q-number is different. This transformation is well defined when the FPS of the indices .ut/ 
are unequal. It works formally on infinite dimensional representations with no identification 
of the indices modulo m. The actions of the generators on this basis are given by (2.5), 
which then defines a module on Uq(sl(N)).  Quotienting then by the identification of the 
indices modulo m, and exploration of the parameter manifold leads to the examples of 
representations described in this paper. 
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